A periplasmic reducing system protects single cysteine residues from oxidation.
نویسندگان
چکیده
The thiol group of the amino acid cysteine can be modified to regulate protein activity. The Escherichia coli periplasm is an oxidizing environment in which most cysteine residues are involved in disulfide bonds. However, many periplasmic proteins contain single cysteine residues, which are vulnerable to oxidation to sulfenic acids and then irreversibly modified to sulfinic and sulfonic acids. We discovered that DsbG and DsbC, two thioredoxin-related proteins, control the global sulfenic acid content of the periplasm and protect single cysteine residues from oxidation. DsbG interacts with the YbiS protein and, along with DsbC, regulates oxidation of its catalytic cysteine residue. Thus, a potentially widespread mechanism controls sulfenic acid modification in the cellular environment.
منابع مشابه
Variants of ribonuclease inhibitor that resist oxidation BYUNG - MOON KIM , L .
Human ribonuclease inhibitor ~hRI! is a cytosolic protein that protects cells from the adventitious invasion of pancreatictype ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and C...
متن کاملBacterial detoxification of Hg(II) and organomercurials.
The most common bacterial mechanism for resistance to mercuric-ion species involves intracellular reduction of Hg(II) to Hg(0). Key proteins of the pathway typically include: MerR, which regulates pathway expression; MerP, which protects the external environment; MerT or MerC, which transport Hg(II) species across the inner membrane; MerA, which catalyses reduction of Hg(II); and sometimes MerB...
متن کاملReactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP.
Reactivities of the two essential cysteine residues in the heavy metal binding motif, MTC(14)AAC(17), of the periplasmic Hg(2+)-binding protein, MerP, have been examined. While Cys-14 and Cys-17 have previously been shown to be Hg(2+)-binding residues, MerP is readily isolated in an inactive Cys-14-Cys-17 disulfide form. In vivo results demonstrated that these cysteine residues are reduced in t...
متن کاملInsight into disulfide bond catalysis in Chlamydia from the structure and function of DsbH, a novel oxidoreductase.
The Chlamydia family of human pathogens uses outer envelope proteins that are highly cross-linked by disulfide bonds but nevertheless keeps an unusually high number of unpaired cysteines in its secreted proteins. To gain insight into chlamydial disulfide bond catalysis, the structure, function, and substrate interaction of a novel periplasmic oxidoreductase, termed DsbH, were determined. The st...
متن کاملEffect of Reduction of Redox Modifications of Cys-Residues in the Na,K-ATPase α1-Subunit on Its Activity
Sodium-potassium adenosine triphosphatase (Na,K-ATPase) creates a gradient of sodium and potassium ions necessary for the viability of animal cells, and it is extremely sensitive to intracellular redox status. Earlier we found that regulatory glutathionylation determines Na,K-ATPase redox sensitivity but the role of basal glutathionylation and other redox modifications of cysteine residues is n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 326 5956 شماره
صفحات -
تاریخ انتشار 2009